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Abstract. The paper presents an analysis of the dynamic behavior of oscillatory flows in elements of capillary
systems based on previously conducted studies. Considered configurations include two capillaries of different diameters
connected in series, as well as a pipe with two branching capillaries (a branching system element). Such elements are
typical for hydraulic and capillary structures found in both technical and biological systems. The purpose of this research
was to extend the previously obtained results to more complex cases involving sharp changes in the cross-section of
capillaries and their branching. In this case, composite capillaries were understood as systems of connected capillary
pipes with different lengths and diameters.

The study begins by applying the theory of laminar flow and established approaches from the literature to determine
flow rates through a capillary of constant diameter under oscillatory inlet conditions. Next, the phase shift between the
oscillations of flow rate and pressure within the capillary is calculated as a function of the capillary radius. It was found
that the phase shift decreases with decreasing capillary radius, but increases with increasing oscillation frequency. Using
mass conservation laws, the phase shifts of flow and pressure oscillations in different sections of a composite linear
capillary are then derived. It is shown that the phase shift of flow rate relative to pressure oscillation depends on the
diameters of the two sections. The phase shift of pressure also varies relative to the first capillary, but the sum of the
phase shifts of pressure and flow rate in each section remains constant. Further analysis of a branching system element
leads to a general and simple rule: the sum of phase shifts in each branch of a capillary junction remains constant.

Thus, the previously established patterns for capillaries with weakly varying diameters are also valid for more
complex composite capillary systems — those with sharp changes in diameter and branching geometries. This result
may be useful for evaluating the distribution of total flow within complex branching capillary networks.

Keywords: capillary, liquid, flow rate, mass transfer, oscillations

1. Introduction

The oscillatory nature of fluid motion in porous and capillary systems
accompanies many natural and technological processes. In the mining industry, it is
directly related to the state of rock masses, as well as to oil and natural gas extraction
technologies [1], technologies for the utilization of secondary resources, and the
preparation of mineral raw materials for further processing. Oscillatory motion also
plays a significant role in biological systems, particularly in capillary processes in
plants and in the circulatory systems of animals and humans [2, 3]. In many cases, the
study of flows in porous media requires investigation of mass transfer processes at
the pore scale, e.g., [4]. In most situations, to describe the process in greater detail,
the problem is reduced to the study of capillary flows in individual tubes—i.e., a
topologically complex porous system is simplified to a certain network of capillaries
[5]. This simplified model makes it possible to address rather complex physical
problems and to provide qualitative recommendations for understanding processes in
real-world scenarios. One of the main directions associated with the dynamic
behavior of such systems and with heat and mass transfer processes involves the
study of unsteady, and in particular, pulsating fluid flows.

The range of applications for such problems is currently quite broad (described,
for example, in reviews [6—8]). The first of these publications [6] highlights the
virtually limitless prospects in the field of microfluidics related to generating pulsatile
oscillations in microcapillaries, mixing solutions, targeted drug delivery within

capillary systems, and more. In the other two publications [7, 8], the authors,
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analyzing the current state of understanding of processes in the cardiovascular
system, emphasize the need for extensive use of mathematical models in this area.
Regarding unsteady and pulsatile flows specifically, classical formulations of these
problems are presented in [9, 10].

Recently, a large number of studies have been conducted, for example, [11-15],
mainly focused on modeling the dynamics of blood flow in the circulatory system. In
[11, 12], the problem of oscillatory flows in capillaries is examined based on classical
solutions. The first study, neglecting inertial terms, obtains solutions for flows with
oscillating capillary walls. The second study provides an analytical solution for a
planar case involving a mixture of fluids, one Newtonian and the other Maxwellian.

The next group of studies [13—15] considers more complex models of blood flow
in capillaries considering the surrounding tissues, where a filtration flow model is
assumed. In [13], the fluid in the capillary is treated as non-Newtonian due to the
influence of hematocrit, while in the latter studies, pressure pulsations are described
as piecewise linear segments. All these publications highlight the significant
influence of pressure pulsations

An interesting practical approach related to pulsatile blood flow is presented in
[16]. Using wavelet coherence analysis, a relationship between oscillations in the
venous and arterial parts of the capillary and their phase difference is established,
which is directly relevant to the present work.

This research, based on the aforementioned approaches, investigates oscillatory
fluid motion in composite capillary systems. The current study is an advancement of
the work [17], which investigated certain features of oscillatory motion in a capillary
with a slightly varying radius.

The aim of this research is to extend previously obtained results to more complex
cases involving sharp changes in the capillary cross-section and branching.
Composite systems are determined here as networks of interconnected capillary tubes
with varying lengths and diameters.

2. Methods
Below, the main equations governing unsteady motion in a capillary tube of
constant diameter are presented:

5u__8p+vﬁ(r(9uj’ (1)
ot poz ror\ 0

or

8(ru)+8(rw):
R @)

where ¢ is time; z is the longitudinal coordinate along the capillary axis; » is the
radius; u — longitudinal velocity; w — the transverse velocity, which in this study
equals zero; p — density; p — pressure; and v — kinematic viscosity coefficient. For
pulsatile flow, the problem has an analytical solution presented in [9]. It is expressed
as a zeroth-order Bessel function with a complex argument. In our case, to obtain the
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required parameters, it is convenient to use a numerical solution directly. According
. . o) . N dP
to [9], the pressure gradient and velocity can be represented as ngz Slﬂ%ﬁ)@,

u=sin(2aft U, +cos(2zft U, , where fis the oscillation frequency. Then, for the functions
Us, U., the following equations are

d°U,  dU, R* dP
S+ 7S+ =—C —
dn’  ndn Xe v pdz ’ (3)
U dUe ;g (4)
an ndn S ’
with the boundary conditions:
for n=0
dU, dU,
== =0
dn  dn ’ )
for n=1
US = UC = 0. (6)

In these equations y=2/R?/v, P are the amplitudes of pressure oscillations, R. is the
capillary radius and n=r/R..

The procedure of the numerical solution is as follows. The solution is represented
in the form: U, =Ri£l/s , Vs=B; and U, =ﬁﬂn. , Ve=1+B. where the functions

vy pdz vy pdz

@, and ¢, satisfy the homogeneous equations (3) and (4). We expand these functions
into series as ¢, =1+ Asyn® + Asyn* + asgn® +..and @, = Acy + Acyn® + deyn® + Acgn® + ... After
substituting these expressions into equations (3) and (4), the obtained coefficients are
expressed in terms of 4cy. Then, starting the integration with a small initial step from
zero point, we adjust the coefficient 4cy so that at n = 1, ¢, = 0. After that, taking B
= - 1/p. (1), the solutions for Vs and V. is obtained, as well as for the flow rate

1 4
; RY ap RY dP
0 = Oysin(2afi )+ O.cos(2afi), where O, =-<-“ g , a;=[nVidn and Q.=-<" g,
2zf pdz 0 2nf pdz

1
q. = In V.dn,
0
Figure 1 shows the curves of dimensionless flow rates as a function of frequency
for different capillary radii from 0.1 mm to 0.5 mm. Considering that equations (3)
and (4) contain only one parameter, y, all the necessary dependencies can be
constructed based on its value. The presence of the g. and ¢, values indicates that the
fluid flow oscillates with a phase shift ¢ (zgo = O./O; = q./q;) relative to the pressure
gradient oscillation. The magnitude of this phase shift, as it is mentioned above,
depends on the parameter y (Figure 2). It follows from this figure that as the
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parameter y decreases, the phase shift tends to zero. This means that either a decrease
in frequency or a decrease in capillary radius leads to a reduction in the phase shift.
On the other hand, even for very narrow capillaries, a significant phase shift can be
achieved by increasing the oscillation frequency.
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Figure 1 — Dimensionless flow rates ¢g. (A) and g, (B) as a function of oscillation frequency for
different capillary radii

Now, using the obtained solutions, it is possible to construct the pulsation
dynamics for composite and branched capillaries. Let us consider it using two
elementary types of composite capillaries as examples.
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Figure 2 — Variation of tgo as a function of parameter y

3. Results and discussion

Composite linear capillaries. By composite linear capillaries, we mean capillaries
consisting of sequentially connected long segments with different, but constant within
each segment, diameters. We assume that the pressure drops arising at the transitions
between segments are much smaller than the resistance of an individual capillary
segment. In this case, the total resistance can be considered as the sum of the
resistances of all segments. The pressure gradient for the j-th segment of the
composite capillary can be written in the general form for harmonic functions as
follows:

@ _ P; sin[27{f(z‘ ta; )]: P; [sin(2:;ﬁ )cos(27tfaj)+ cos(27;ﬁ)sin(27{faj )], (7)

pdz

where ¢, defines the phase of the harmonic oscillation. For a single capillary, it
depends only on the choice of the initial point on the time axis. In the expression (7),
it was assumed that the pressure gradient in the j-th segment is determined solely by
the geometrical characteristics of that particular channel. It was also taken into
account that the transition from one capillary to another is associated with a sharp
change in radius, which may lead to a change in the phase angle. Therefore, in
composite capillaries, the phases of adjacent segments must be related to each other.
From the form of equations (3) and (4), it follows that the oscillating fluid flow rate O
differs in shape from the pressure gradient due to a phase shift. Thus, the flow rate in
the j-th segment of the capillary can be written as:

Q_;‘ == GJ- sinl_ngf‘(f “+ o ; + c)‘_),— )J:
= G {COS[ZY;?(‘(Q(J; —+ 5}),— )]- Sin(27y‘?)—l— Sin[27‘z}‘j(afj —+ 5}),— )]- C
sSin (27;;{.?)[005(27;}‘5; )005(27;}"65;- )— sin(27g7(5j )Sin(Z
< ; } . g ” . )
7 {—l— COS(27§ff)[Sln(27§fC>/ )005(27;7‘6(; )—l— cos(27‘zfc‘>j )Sl]
(8)
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RS o : ,
2‘; Pf(qfﬁqu)”z is uniquely related to 7, and ¢, defines the phase

T,

where G; =

difference between the flow oscillation and the pressure gradient oscillation.
Considering that if the oscillation frequency and the radii of the channels are known,
then the phase deviations 9, in each segment are also known.

Let us consider a specific case of a composite capillary consisting of two
segments with lengths /; and L. In this case, the total pressure drop at the ends of the
capillary will be equal to:

[[A) cos(Zaren )+ £Pals cos(Zagias )sin(2g7)+ 9
1+ [24 sin(2oafee, )+ Pois sin(2agcers )]COS(ZJQ’.?)I . ( )

Ny = O
At the interface between the segments, the condition of flow rate continuity must be
satisfied, since the flow rate is a continuous function and does not depend on the
segment number.

Gy cos|2af (oq +6y )| = Gy cos|2af (a; +0)], (10)
Gysin[2af (o) +9y )] = G, sin[2af (o +0, )] . (11

These conditions reveal an interesting aspect. Suppose the fluid velocity in the
first capillary 1s described by a sine law; then, in the second capillary, the flow must
also oscillate according to the same law. From equation (11), it follows that this is
possible if sin[27(f (061 +0) )]: 0 and SiH[ZEf (a7 + 05 )]: 0,1i.e. @+, =0 0, =0, This relation
defines the oscillation phases of the pressures in the first and second segments (one of
the phases can be chosen arbitrarily). By substituting these values into equation (9),
the variation of the total pressure at the ends of such a tube can be determined.

Alternatively, the problem may be reformulated by specifying the total pressure
drop at the tube ends, for instance, according to the same sine function, i.e.

Rl cos(2afoy )+ Pyl cos(2afoy )= AP, (12)
under these conditions
Rl sin(2afay )+ Py sin(2zfor )= 0, (13)

In this case, a; = 0 and a, = 0 cannot be assumed, as this would lead to the
following simplifications in formulas (10) and (11) Gjcos(2a/8,)= G, cos(2afd, ),
Gy sin(2af; )= Gysin(27/0; ).

From the last two expressions, it follows that condition tg(27/d;)=tg(27/d,) is
satisfied only when the radii of the first and second channels are equal, which
contradicts the assumptions of the problem.

From condition (13), it follows that despite the sinusoidal nature of the total
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pressure drop oscillation, additional pressure differences arise within each tube.
These vary according to a cosine law and have opposite signs, so that their sum
equals zero. In this case, dividing equation (11) by equation (10), the following

expression is obtained tg[27zf ‘(51 ta )]: tg[27zf (52 oy )] or

aytoy=a;top, (14)

considering that G, =Gy,

4 2 2 V2 pd 2 2V
R('l P] (CISI + Q(,l ) 2 RL2 P2 (q82 + Q(,z ) 2 : (1 5)

From (12) and (15), it is found that

41, 2)a
R, (qsﬁqcl J?
Gy 7h [FAP, (16)
Rc2 2 + 2 V2
45,4,

using (13) and considering (14), the following result is obtained:

Bl
Bl + Pyl cos(d; = 5,)

tgoy = — sin(d, - 6,), (17)

From this, it indeed follows that a; and, accordingly, a, become equal to zero when
01 =0,. Thus, condition (14) establishes the relationship between the phases of
pressure oscillations in two adjacent segments. The study [16] demonstrated that
blood flow oscillations within the cardiac, respiratory, and myogenic frequency
ranges can exhibit high and reliable phase coherence across different parts of the
capillary. In the specific investigated case, blood flow velocities were found to be in
phase, i.e., condition (14) is satisfied. The authors of the mentioned article suggest
that disruptions in phase coherence and stability of velocity relationships may
indicate certain vascular changes. Thus, this simple condition may be necessary for
analyzing the state of the cardiovascular system.

Branched capillaries. Samples of branched channels are widely represented in
technical and biological systems [18-20]. For elements of a branched capillary,
assuming equal pressure drops at the branching points, the following relationships
apply:

Pyl cos(2nfay ) = Pily cos(2nfa ),
(18)
Pl sin(2afa, )= Py sin(2afos ).

Indices 2 and 3 denote the two branches of the capillary. From relations (18), it
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follows that

(X2:(L3,

(19)

Pyly = Bly

That is, the pressure in the branches oscillates in the same phase. From equation (19),
it follows that

h G, _ L G

4 I, 4 1 20)
R |2 2V R[22 2 120 (

Gy[cos(2afd; eos(2nfe ) - sin (2af3, Jsin (2nfer )| =
(G, cos(2/3, )+ Gy cos(2afd; )|cos(2nfi, ) -
~[G, sin(219, )+ G sin (215, )]sin (2t )

; 1)

Gy [sin 27/ )eos(2fiy )+ cos(2afy Jsin (2mfay )] =
(G, sin(2afd, ) + Gy sin(Qafd; Jleos(2afi, )+ (22)
+[G, cos(2afd, )+ G; cos(2afd; ) |sin(2afa, )

In these expressions, index 1 denotes the segment before the branching point. By
squaring both the left- and right-hand sides of equations (21) and (22), and then
summing them accordingly, the following is obtained:

G = G3 +2cos]2af (6, — 3;)|G,G; + G5, (23)

It follows that the condition Gi = G, + G; is satisfied only when 0, = d,. Taking
into account equation (20), expression (23) yields:

2

q, T, NN jl
’Jluos [2 :rf(dgd_«,)]ﬂ{'fz( Cf’] ] ())JI”J G, =G, (24)

(4
\

/“) RL bl 2
(g0, ) ()

By eliminating G, from conditions (21) and (22), it is obtained that
G2 . sin(al +5l ] —52)+ G3 -sin(al +51 —dy —53): 0 or

{cos((xl +0, — 0 )+ cos(oy +, ()3)g }gaz

o (25)

{sin((xl +0; — 0, ) +sin(og +0; — Iy )G‘}
2
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From (25), taking into account (20), the phase of the pressure oscillation in the
branched part relative to the oscillation in the first segment of the composite capillary
can be obtained. If the diameters of tubes in segments 2 and 3 are equal, then J5=9,
and tgoy = tg(a, +0,-0,) or a +d, =a +4 , for any ratio of G3/G;. This result coincides
with that for the linear composite capillary (equation (14)). Thus, considering
condition (23), it can be stated that these two channels are equivalent to a single one
with a total flow rate G,. In the general case, if it is initially assumed that
a;+dy=a3+d; and the conditions (21) and (22) are rearranged, the equality Gi= G, +
G5 can be obtained, which holds for different diameters of the channels % and ;.
Therefore, at the channel branching, oscillations in the different branches exhibit
some phase shift, while the sum ¢; *9; (j =1, 2, 3) remains constant for all elements.

4. Conclusion

The analysis of the study results suggests that the total phase shift, in cases where
there are abrupt changes in the cross-sectional areas of the capillaries and even when
the topological structure of the channel changes sharply, remains constant for each
segment of the channel. This conclusion is consistent with the authors’ earlier
findings for channels with slightly varying radii [17].

The obtained results may have practical applications in the study of branched
capillary systems and hydraulic distribution lines.
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KONUBANBbHWUN PYX PIOUHU B CKNMALEHWUX KAMINAPAX
€nicees B., IlyueHko B., Py3osa T., Xapawek M.

AHoTauif. Y Uuin poGOoTi Ha OCHOBI BWKOHAHMX paHille [OOCHiMKEHb PO3rNSHYTO AWHaMiYHi  0cObnMBOCTI
KONWBanbHUX pyxiB B enemMeHTax KaninsgpHux cucteM. Takumu eneMeHTamu, Hanpuknag, € NocnigoBHO NOB'A3aHi 4Ba
kaninspu 3 pisHumMu giametpamu, abo Tpybouka 3 ABOMA Kaninspamu, LIO BiOXOAATb 3 HEi (eNeMEeHT poaranyeHoi
cuctemu). MogibHi enemeHTV nowwmpeHi y Oyab-gKkUX rigpaBivHMX Ta KaninspHUX YTBOPEHHSX, WO BiGHOCATLCA SiK 40
TEXHIYHMX, TaK i A0 GionoriyHmx cuctem. Ha nouatky poboTW Ha OCHOBI Teopii NamiHapHOTO pyxy Ta BigOMMX 3
niTepaTtypn MigXo4iB MOKasaHO YMCENbHI 3HAYEHHS BUTpAT 4epes Kaninap MOCTIMHOTO fiamMeTpa Npu HaknagaHHi
KonueaHb Ha Bxofi. lMOTiIM BWU3HAYalOTLCA | HABOAATHCH 3HAYEHHS (ha3oBOro 3MIlLEHHs KOMWBaHb BUTPAT LLOAO
KOnMBaHb TUCKY B Kanminapi B 3anexHocTi Big Woro papgiyca. [lani Ha OCHOBI 3aKOHIB Npo 30epexeHHs mac
BCTAHOBIIOIOTLCA 3aNEXHOCTI (ha3oBMX 3CYBIB KONMBAHb BUTPAT i TUCKIB B Pi3HWUX YacTUHAX CKNafeHoro MiHiMHoro
kaninsipa. byno BCTaHOBMEHO, WO, B 3aMeXHOCTI Bif AiaMeTpiB ABOX YACTUH CKMadeHOro Kaninsapa 3MiHoTLCA (hasoBi
3MILLEHHST BUTPAT LIOAO KOMMUBAHHS TUCKY. 3MIHIOIOTBCA TaKoX (Pa3oBe 3MILLEHHSI TUCKIB LLOAO NEPLUOro Kaninapa, ane
Mpu LibOMY CyMa 3MilLleHb KOMBaHb TUCKY | BUTPATW B KOXXHOMY Kaninspi 3anuiLaeTbCs NocTinHo. MNoganbLumi aHanis,
NpoOBEAEHU AN eNEMEHTa po3rafy)XeHoi CUCTEMU, MPWU3BOAMTL O 3aranbHOl MPOCTOI YMOBM, L0 Cyma (ha3oBuX
3CYBIB 47151 KOXKHOI YAaCTWUHM PO3rasy)eHoro eneMeHTa KaninsapHoi CUCTEM 3anNMUWAETLCS BENMYMHOK MOCTINHOI.

TakuM YMHOM, OTPWUMaHi paHille 3aKOHOMIPHOCTI Ans kaninspiB 3i cnabo 3MiHHAM OiaMeTpoM, 3anuLatTbCs
cnpaBeanuBuMM Anst Ginblu CKNagHUX CKMNafOBWX KamifsipHUX CUCTEM, Mif SKUMW B AaHOMY BUNAZKY PO3YMitOTbCs
Kaninspu 3 piskummn 3MiHamu fiameTpa i kaninsapu, Wo posranyxyTses. Lien pesynbtat, MoxnmBo, Byae KOpucHuiA ans
OLliHOK pO3MogiNy 3ararnbHOi BUTPATH B €MEMEHTaX CKMagHNX KaninspHUX CUCTEM, LUO FiNKYHOTbCS.

KntovoBi cnoBa: kaninsp, pigunHa, ButpaTa, MacooOMiH, KONMBaHHSI.
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