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OSCILLATORY MOTION OF LIQUID IN COMPOSITE CAPILLARIES
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Abstract. The paper presents an analysis of the dynamic behavior of oscillatory flows in elements of capillary
systems based on previously conducted studies. Considered configurations include two capillaries of different diameters
connected in series, as well as a pipe with two branching capillaries (a branching system element). Such elements are
typical for hydraulic and capillary structures found in both technical and biological systems. The purpose of this research
was to extend the previously obtained results to more complex cases involving sharp changes in the cross-section of
capillaries and their branching. In this case, composite capillaries were understood as systems of connected capillary
pipes with different lengths and diameters.

The study begins by applying the theory of laminar flow and established approaches from the literature to determine
flow rates through a capillary of constant diameter under oscillatory inlet conditions. Next, the phase shift between the
oscillations of flow rate and pressure within the capillary is calculated as a function of the capillary radius. It was found
that the phase shift decreases with decreasing capillary radius, but increases with increasing oscillation frequency. Using
mass conservation laws, the phase shifts of flow and pressure oscillations in different sections of a composite linear
capillary are then derived. It is shown that the phase shift of flow rate relative to pressure oscillation depends on the
diameters of the two sections. The phase shift of pressure also varies relative to the first capillary, but the sum of the
phase shifts of pressure and flow rate in each section remains constant. Further analysis of a branching system element
leads to a general and simple rule: the sum of phase shifts in each branch of a capillary junction remains constant.

Thus,  the previously established patterns for  capillaries with weakly  varying diameters are also valid for  more
complex composite capillary systems — those with sharp changes in diameter and branching geometries. This result
may be useful for evaluating the distribution of total flow within complex branching capillary networks.
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1. Introduction
The  oscillatory  nature  of  fluid  motion  in  porous  and  capillary  systems

accompanies many natural and technological processes. In the mining industry, it is
directly related to the state of rock masses, as well as to oil and natural gas extraction
technologies  [1],  technologies  for  the  utilization  of  secondary  resources,  and  the
preparation of mineral raw materials for further processing. Oscillatory motion also
plays a significant role in biological systems, particularly in capillary processes in
plants and in the circulatory systems of animals and humans [2, 3]. In many cases, the
study of flows in porous media requires investigation of mass transfer processes at
the pore scale, e.g., [4]. In most situations, to describe the process in greater detail,
the problem is reduced to the study of capillary flows in individual tubes—i.e.,  a
topologically complex porous system is simplified to a certain network of capillaries
[5].  This  simplified  model  makes  it  possible  to  address  rather  complex  physical
problems and to provide qualitative recommendations for understanding processes in
real-world  scenarios.  One  of  the  main  directions  associated  with  the  dynamic
behavior of such systems and with heat  and mass transfer processes involves the
study of unsteady, and in particular, pulsating fluid flows.

The range of applications for such problems is currently quite broad (described,
for  example,  in  reviews [6–8]).  The  first  of  these  publications  [6]  highlights  the
virtually limitless prospects in the field of microfluidics related to generating pulsatile
oscillations  in  microcapillaries,  mixing  solutions,  targeted  drug  delivery  within
capillary  systems,  and  more.  In  the  other  two  publications  [7,  8],  the  authors,
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analyzing  the  current  state  of  understanding  of  processes  in  the  cardiovascular
system, emphasize the need for extensive use of mathematical models in this area.
Regarding unsteady and pulsatile flows specifically, classical formulations of these
problems are presented in [9, 10].

Recently, a large number of studies have been conducted, for example, [11–15],
mainly focused on modeling the dynamics of blood flow in the circulatory system. In
[11, 12], the problem of oscillatory flows in capillaries is examined based on classical
solutions. The first study, neglecting inertial terms, obtains solutions for flows with
oscillating capillary walls.  The second study provides an analytical  solution for a
planar case involving a mixture of fluids, one Newtonian and the other Maxwellian.

The next group of studies [13–15] considers more complex models of blood flow
in capillaries considering the surrounding tissues, where a filtration flow model is
assumed. In [13], the fluid in the capillary is treated as non-Newtonian due to the
influence of hematocrit, while in the latter studies, pressure pulsations are described
as  piecewise  linear  segments.  All  these  publications  highlight  the  significant
influence of pressure pulsations

An interesting practical approach related to pulsatile blood flow is presented in
[16].  Using wavelet  coherence analysis,  a  relationship between oscillations in  the
venous and arterial parts of the capillary and their phase difference is established,
which is directly relevant to the present work.

This  research, based on the aforementioned approaches, investigates oscillatory
fluid motion in composite capillary systems. The current study is an advancement of
the work [17], which investigated certain features of oscillatory motion in a capillary
with a slightly varying radius.

The aim of this research is to extend previously obtained results to more complex
cases  involving  sharp  changes  in  the  capillary  cross-section  and  branching.
Composite systems are determined here as networks of interconnected capillary tubes
with varying lengths and diameters.

2. Methods
Below,  the  main  equations  governing  unsteady  motion  in  a  capillary  tube  of

constant diameter are presented:

, (1)

, (2)

where  t is  time;  z is  the longitudinal  coordinate along the capillary axis;  r is  the
radius;  u – longitudinal velocity;  w – the transverse velocity, which in this study
equals  zero;  ρ – density;  p – pressure; and  ν – kinematic viscosity coefficient. For
pulsatile flow, the problem has an analytical solution presented in [9]. It is expressed
as a zeroth-order Bessel function with a complex argument. In our case, to obtain the
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required parameters, it is convenient to use a numerical solution directly. According
to [9], the pressure gradient and velocity can be represented as  ,

, where f is the oscillation frequency. Then, for the functions
Us, Uc, the following equations are

 , (3)

, (4)

with the boundary conditions:

for n=0
, (5)

for n=1
Us = Uc = 0. (6)

In these equations ,  P are the amplitudes of pressure oscillations, Rc is the
capillary radius and n=r/Rc.

The procedure of the numerical solution is as follows. The solution is represented

in the form: ,   and ,  , where the functions

φs and φc satisfy the homogeneous equations (3) and (4). We expand these functions
into series as and  After
substituting these expressions into equations (3) and (4), the obtained coefficients are
expressed in terms of . Then, starting the integration with a small initial step from
zero point, we adjust the coefficient  so that at n = 1, φs  = 0. After that, taking  B
=  - 1/φc (1),  the solutions for   and   is obtained, as well as for the flow rate

,  where  ,    and ,

.

Figure 1 shows the curves of dimensionless flow rates as a function of frequency
for different capillary radii from 0.1 mm to 0.5 mm. Considering that equations (3)
and  (4)  contain  only  one  parameter,  χ,  all  the  necessary  dependencies  can  be
constructed based on its value. The presence of the qс  and  qs values indicates that the
fluid flow oscillates with a phase shift δ (tgδ = Qс/Qs = qс/qs) relative to the pressure
gradient  oscillation.  The magnitude of  this  phase shift,  as  it  is mentioned above,
depends  on  the  parameter  χ  (Figure  2).  It  follows  from  this  figure  that  as  the
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parameter χ decreases, the phase shift tends to zero. This means that either a decrease
in frequency or a decrease in capillary radius leads to a reduction in the phase shift.
On the other hand, even for very narrow capillaries, a significant phase shift can be
achieved by increasing the oscillation frequency.

A)

В)

1 – Rc  = 0.1; 2 – Rc  = 0.2; 3 – Rc  = 0.3; 4 – Rc  = 0.4; 5 – Rc  = 0.5 mm

Figure 1 – Dimensionless flow rates qc (А) and qs (В) as a function of oscillation frequency for
different capillary radii

Now,  using  the  obtained  solutions,  it  is  possible  to  construct  the  pulsation
dynamics  for  composite  and  branched  capillaries.  Let  us  consider  it using  two
elementary types of composite capillaries as examples.
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Figure 2 – Variation of tgδ as a function of parameter χ

3. Results and discussion
Composite linear capillaries. By composite linear capillaries, we mean capillaries

consisting of sequentially connected long segments with different, but constant within
each segment, diameters. We assume that the pressure drops arising at the transitions
between segments are much smaller than the resistance of an individual capillary
segment.  In  this  case,  the  total  resistance  can  be  considered  as  the  sum  of  the
resistances  of  all  segments.  The  pressure  gradient  for  the  j-th  segment  of  the
composite capillary can be written in the general  form for harmonic functions as
follows:

, (7)

where   defines  the  phase  of  the harmonic  oscillation.  For  a  single  capillary,  it
depends only on the choice of the initial point on the time axis. In the expression (7),
it was assumed that the pressure gradient in the j-th segment is determined solely by
the  geometrical  characteristics  of  that  particular  channel.  It  was  also  taken  into
account that the transition from one capillary to another is associated with a sharp
change in  radius,  which may lead to  a  change in  the  phase  angle.  Therefore,  in
composite capillaries, the phases of adjacent segments must be related to each other.
From the form of equations (3) and (4), it follows that the oscillating fluid flow rate Q
differs in shape from the pressure gradient due to a phase shift. Thus, the flow rate in
the j-th segment of the capillary can be written as:

, (8)
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where   is  uniquely  related  to  ,  and  defines  the  phase

difference  between  the  flow  oscillation  and  the  pressure  gradient  oscillation.
Considering that if the oscillation frequency and the radii of the channels are known,
then the phase deviations  in each segment are also known.

Let  us  consider  a  specific  case  of  a  composite  capillary  consisting  of  two
segments with lengths l1 and l2. In this case, the total pressure drop at the ends of the
capillary will be equal to:

. (9)

At the interface between the segments, the condition of flow rate continuity must be
satisfied, since the flow rate is a continuous function and does not depend on the
segment number.

,  (10)

 .  (11)

These conditions reveal an interesting aspect. Suppose the fluid velocity in the
first capillary is described by a sine law; then, in the second capillary, the flow must
also oscillate according to the same law. From equation (11), it follows that this is
possible if  and , i.e. . This relation
defines the oscillation phases of the pressures in the first and second segments (one of
the phases can be chosen arbitrarily). By substituting these values into equation (9),
the variation of the total pressure at the ends of such a tube can be determined.

Alternatively, the problem may be reformulated by specifying the total pressure
drop at the tube ends, for instance, according to the same sine function, i.e.

, (12)

under these conditions

,  (13)

In this case,  α1 = 0 and  α2 = 0 cannot be assumed, as this would lead to the
following  simplifications  in  formulas  (10)  and  (11)  ,

.
From  the  last  two  expressions,  it  follows  that  condition   is

satisfied  only  when  the  radii  of  the  first  and  second  channels  are  equal,  which
contradicts the assumptions of the problem.

From condition  (13),  it  follows that  despite  the  sinusoidal  nature  of  the  total
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pressure  drop  oscillation,  additional  pressure  differences  arise  within  each  tube.
These vary according to a cosine law and have opposite signs,  so that  their sum
equals  zero.  In  this  case,  dividing equation  (11)  by  equation  (10),  the  following
expression is obtained  or 

,  (14)

considering that ,

 .  (15)

From (12) and (15), it is found that

,  (16)

using (13) and considering (14), the following result is obtained:

,  (17)

From this, it indeed follows that α1 and, accordingly, α2 become equal to zero when
δ1 = δ2.  Thus,  condition  (14)  establishes  the  relationship  between  the  phases  of
pressure  oscillations  in  two adjacent  segments.  The study [16]  demonstrated  that
blood  flow  oscillations  within  the  cardiac,  respiratory,  and  myogenic  frequency
ranges can exhibit  high and reliable phase coherence across different parts of the
capillary. In the specific investigated case, blood flow velocities were found to be in
phase, i.e., condition (14) is satisfied. The authors of the mentioned article suggest
that  disruptions  in  phase  coherence  and  stability  of  velocity  relationships  may
indicate certain vascular changes. Thus, this simple condition may be necessary for
analyzing the state of the cardiovascular system.

Branched capillaries. Samples of branched channels are widely represented in
technical  and  biological  systems  [18–20].  For  elements  of  a  branched  capillary,
assuming equal pressure drops at the branching points, the following relationships
apply:

,
(18)

.

Indices 2 and 3 denote the two branches of  the capillary.  From relations (18),  it
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follows that
,

(19)
,

That is, the pressure in the branches oscillates in the same phase. From equation (19),
it follows that

,  (20)

,  (21)

. (22)

In these expressions, index 1 denotes the segment before the branching point. By
squaring both the left-  and right-hand sides of  equations (21) and (22),  and then
summing them accordingly, the following is obtained:

,  (23)

It follows that the condition G1 = G2 + G3 is satisfied only when δ1 = δ2. Taking
into account equation (20), expression (23) yields:

,  (24)

By  eliminating  G1 from  conditions  (21)  and  (22),  it  is  obtained  that
 or

. (25)
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From (25), taking into account (20), the phase of the pressure oscillation in the
branched part relative to the oscillation in the first segment of the composite capillary
can be obtained. If the diameters of tubes in segments 2 and 3 are equal, then 
and  or , for any ratio of . This result coincides
with  that  for  the  linear  composite  capillary  (equation  (14)).  Thus,  considering
condition (23), it can be stated that these two channels are equivalent to a single one
with  a  total  flow  rate  G1.  In  the  general  case,  if  it  is  initially  assumed  that

 and the conditions (21) and (22) are rearranged, the equality G1 = G2 +
G3 can be obtained, which holds for different diameters of the channels   and  .
Therefore,  at  the channel  branching,  oscillations  in  the different  branches  exhibit
some phase shift, while the sum  (j = 1, 2, 3) remains constant for all elements.

4. Conclusion
The analysis of the study results suggests that the total phase shift, in cases where

there are abrupt changes in the cross-sectional areas of the capillaries and even when
the topological structure of the channel changes sharply, remains constant for each
segment  of  the  channel.  This  conclusion  is  consistent  with  the  authors’  earlier
findings for channels with slightly varying radii [17].

The obtained results may have practical  applications in the study of branched
capillary systems and hydraulic distribution lines.
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КОЛИВАЛЬНИЙ РУХ РІДИНИ В СКЛАДЕНИХ КАПІЛЯРАХ
Єлісєєв В., Луценко В., Рузова Т., Харашек М.

Анотація. У  цій  роботі  на  основі  виконаних  раніше  досліджень  розглянуто  динамічні  особливості
коливальних рухів в елементах капілярних систем. Такими елементами, наприклад, є послідовно пов'язані два
капіляри з різними діаметрами, або трубочка з  двома капілярами,  що відходять з  неї (елемент розгалуженої
системи). Подібні елементи поширені у будь-яких гідравлічних та капілярних утвореннях, що відносяться як до
технічних,  так  і  до  біологічних  систем.  На  початку  роботи  на  основі  теорії  ламінарного  руху  та  відомих  з
літератури  підходів  показано  чисельні  значення  витрат  через  капіляр  постійного  діаметра  при  накладанні
коливань  на  вході.  Потім  визначаються  і  наводяться  значення  фазового  зміщення  коливань  витрат  щодо
коливань  тиску  в  капілярі  в  залежності  від  його  радіуса.  Далі  на  основі  законів  про  збереження  мас
встановлюються  залежності  фазових зсувів  коливань витрат  і  тисків  в  різних  частинах  складеного  лінійного
капіляра. Було встановлено, що, в залежності від діаметрів двох частин складеного капіляра змінюються фазові
зміщення витрат щодо коливання тиску. Змінюються також фазове зміщення тисків щодо першого капіляра, але
при цьому сума зміщень коливань тиску і витрати в кожному капілярі залишається постійною. Подальший аналіз,
проведений для елемента розгалуженої  системи,  призводить  до  загальної  простої  умови,  що сума фазових
зсувів для кожної частини розгалуженого елемента капілярної системи залишається величиною постійною.

Таким  чином,  отримані  раніше  закономірності  для  капілярів  зі  слабо  змінним  діаметром,  залишаються
справедливими для  більш складних  складових  капілярних  систем,  під  якими в  даному  випадку  розуміються
капіляри з різкими змінами діаметра і капіляри, що розгалужуються. Цей результат, можливо, буде корисний для
оцінок розподілу загальної витрати в елементах складних капілярних систем, що гілкуються.

Ключові слова: капіляр, рідина, витрата, масообмін, коливання.
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